Python编程进阶,常用八大技巧!
整理字符串输入
整理用户输入的问题在编程过程中极为常见。通常情况下,将字符转换为小写或大写就够了,有时你可以使用正则表达式模块「Regex」完成这项工作。但是如果问题很复杂,可能有更好的方法来解决:
user_input="This\nstringhas\tsomewhitespaces...\r\n"
character_map={
ord('\n'):'',
ord('\t'):'',
ord('\r'):None
}
user_input.translate(character_map)#Thisstringhassomewhitespaces...
在本例中,你可以看到空格符「\n」和「\t」都被替换成了单个空格,「\r」都被删掉了。这只是个很简单的例子,我们可以更进一步,使用「unicodedata」程序包生成大型重映射表,并使用其中的「combining()」进行生成和映射。
迭代器切片(Slice)
如果对迭代器进行切片操作,会返回一个「TypeError」,提示生成器对象没有下标,但是我们可以用一个简单的方案来解决这个问题:
importitertools
s=itertools.islice(range(50),10,20)#
forvalins:
...
我们可以使用「itertools.islice」创建一个「islice」对象,该对象是一个迭代器,可以产生我们想要的项。但需要注意的是,该操作要使用切片之前的所有生成器项,以及「islice」对象中的所有项。
跳过可迭代对象的开头
有时你要处理一些以不需要的行(如注释)开头的文件。「itertools」再次提供了一种简单的解决方案:
string_from_file="""
//Author:...
//License:...
//
//Date:...
Actualcontent...
importitertools
forlineinitertools.dropwhile(lambdaline:line.startswith("//"),string_from_file.split("\n")):
print(line)
这段代码只打印初始注释部分之后的内容。如果我们只想舍弃可迭代对象的开头部分(本示例中为开头的注释行),而又不知道要这部分有多长时,这种方法就很有用了。
只包含关键字参数的函数(kwargs)
当我们使用下面的函数时,创建仅仅需要关键字参数作为输入的函数来提供更清晰的函数定义,会很有帮助:
deftest(*,a,b):
pass
test("valuefora","valueforb")#TypeError:test()takes0positionalarguments...
test(a="value",b="value2")#Works...
如你所见,在关键字参数之前加上一个「*」就可以解决这个问题。如果我们将某些参数放在「*」参数之前,它们显然是位置参数。
创建支持「with」语句的对象
举例而言,我们都知道如何使用「with」语句打开文件或获取锁,但是我们可以实现自己上下文表达式吗?是的,我们可以使用「__enter__」和「__exit__」来实现上下文管理协议:
classConnection:
def__init__(self):
...
def__enter__(self):
#Initializeconnection...
def__exit__(self,type,value,traceback):
#Closeconnection...
withConnection()asc:
#__enter__()executes
...
#conn.__exit__()executes
这是在Python中最常见的实现上下文管理的方法,但是还有更简单的方法:
fromcontextlibimportcontextmanager
@contextmanager
deftag(name):
print(f"<{name}>")
yield
print(f"")
withtag("h1"):
print("ThisisTitle.")
上面这段代码使用contextmanager的manager装饰器实现了内容管理协议。在进入with块时tag函数的第一部分(在yield之前的部分)就已经执行了,然后with块才被执行,最后执行tag函数的其余部分。
用「__slots__」节省内存
如果你曾经编写过一个创建了某种类的大量实例的程序,那么你可能已经注意到,你的程序突然需要大量的内存。那是因为Python使用字典来表示类实例的属性,这使其速度很快,但内存使用效率却不是很高。通常情况下,这并不是一个严重的问题。但是,如果你的程序因此受到严重的影响,不妨试一下「__slots__」:
classPerson:
__slots__=["first_name","last_name","phone"]
def__init__(self,first_name,last_name,phone):
self.first_name=first_name
self.last_name=last_name
self.phone=phone
当我们定义了「__slots__」属性时,Python没有使用字典来表示属性,而是使用小的固定大小的数组,这大大减少了每个实例所需的内存。使用「__slots__」也有一些缺点:我们不能声明任何新的属性,我们只能使用「__slots__」上现有的属性。而且,带有「__slots__」的类不能使用多重继承。
限制「CPU」和内存使用量
如果不是想优化程序对内存或CPU的使用率,而是想直接将其限制为某个确定的数字,Python也有一个对应的库可以做到:
importsignal
importresource
importos
#ToLimitCPUtime
deftime_exceeded(signo,frame):
print("CPUexceeded...")
raiseSystemExit(1)
defset_max_runtime(seconds):
#Installthesignalhandlerandsetaresourcelimit
soft,hard=resource.getrlimit(resource.RLIMIT_CPU)
resource.setrlimit(resource.RLIMIT_CPU,(seconds,hard))
signal.signal(signal.SIGXCPU,time_exceeded)
#Tolimitmemoryusage
defset_max_memory(size):
soft,hard=resource.getrlimit(resource.RLIMIT_AS)
resource.setrlimit(resource.RLIMIT_AS,(size,hard))
我们可以看到,在上面的代码片段中,同时包含设置最大CPU运行时间和最大内存使用限制的选项。在限制CPU的运行时间时,我们首先获得该特定资源(RLIMIT_CPU)的软限制和硬限制,然后使用通过参数指定的秒数和先前检索到的硬限制来进行设置。最后,如果CPU的运行时间超过了限制,我们将发出系统退出的信号。在内存使用方面,我们再次检索软限制和硬限制,并使用带「size」参数的「setrlimit」和先前检索到的硬限制来设置它。
控制可以/不可以导入什么
有些语言有非常明显的机制来导出成员(变量、方法、接口),例如在Golang中只有以大写字母开头的成员被导出。然而,在Python中,所有成员都会被导出(除非我们使用了「__all__」):
deffoo():
pass
defbar():
pass
__all__=["bar"]
在上面这段代码中,我们知道只有「bar」函数被导出了。同样,我们可以让「__all__」为空,这样就不会导出任何东西,当从这个模块导入的时候,会造成「AttributeError」。
实现比较运算符的简单方法
为一个类实现所有的比较运算符(如__lt__,__le__,__gt__,__ge__)是很繁琐的。有更简单的方法可以做到这一点吗?这种时候,「functools.total_ordering」就是一个很好的帮手:
fromfunctoolsimporttotal_ordering
@total_ordering
classNumber:
def__init__(self,value):
self.value=value
def__lt__(self,other):
returnself.value def__eq__(self,other): returnself.value==other.value print(Number(20)>Number(3)) print(Number(1) print(Number(15)>=Number(15)) print(Number(10)<=Number(2)) 这里的工作原理究竟是怎样的呢?我们用「total_ordering」装饰器简化实现对类实例排序的过程。我们只需要定义「__lt__」和「__eq__」就可以了,它们是实现其余操作所需要的最小的操作集合(这里也体现了装饰器的作用——为我们填补空白)。 结语 并非本文中所有提到的功能在日常的Python编程中都是必需或有用的,但是其中某些功能可能会不时派上用场,而且它们也可能简化一些原本就很冗长且令人烦恼的任务。还需指出的是,所有这些功能都是Python标准库的一部分。而在我看来,其中一些功能似乎并不像标准库中包含的标准内容,所以当你使用Python实现本文提到的某些功能时,请先参阅Python的标准库,如果你不能找到想要的功能,可能只是因为你还没有尽力查找(如果真的没有,那它肯定也存在于一些第三方库)。 以上内容为大家介绍了Python编程进阶,常用八大技巧!,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注IT培训机构:千锋教育。
相关推荐HOT
更多>>如何使用Pandas处理Excel?
如何使用Pandas处理Excel?做过行政或者人事,或者对此有过了解的小伙伴,一定对下发各个部分的表有着非常深刻的印象,最常见的就是需要我们将一...详情>>
2023-11-14 07:43:15python中np.insert()函数的使用方法
python中np.insert()函数的使用方法在numpy数组操作中,np.append()方法可以在每行每列的最后添加数据,但其位置是规定的,那如果想要指定添加...详情>>
2023-11-14 05:06:13SVM在python中的原理如何理解?
SVM在python中的原理如何理解?在python中除了编程化的知识点外,对于数学方法的算法也有所涉及,SVM就是一种很好地体现。我们学习过数学中的坐...详情>>
2023-11-14 04:30:04python处理绝对路径和相对路径函数有哪些?
python处理绝对路径和相对路径函数有哪些?绝对路径和相对路径是什么?绝对路径:从根文件夹开始,Windows系统以盘符(C:)作为根文件夹,OSX或Lin...详情>>
2023-11-14 03:33:02热门推荐
如何使用python any()判断多元素?
沸如何使用Pandas处理Excel?
热python函数中的参数有哪些?
热python中pygal模块如何使用?
新Python的excel处理操作
python中doctest库是什么?
python中series是什么意思
python中np.insert()函数的使用方法
SVM在python中的原理如何理解?
Python描述符中有哪三种方法?
python处理绝对路径和相对路径函数有哪些?
python单继承和多继承如何定义?
python封装中的私有如何理解?
python模块引入的三种方式