pythonK-NN算法的优缺点
pythonK-NN算法的优缺点
本文教程操作环境:windows7系统、Python3.9.1,DELLG3电脑。
1、优点
(1)简单而有效
(2)再培训成本低。
(3)适合跨领域的抽样。
基于KNN的方法主要依赖于附近有限个样本,而基于类域的KNN方法则不能确定其所属的类类,所以KNN方法更适合于类域有较多交叉或重叠的待分样本集。
(4)适用于各种样本量的分类。
所提出的方法适用于类域中具有较大样本容量的类动态分类,而类域中具有较大样本容量的类动态分类更易产生错误。
2、缺点
(1)是惰性学习。
KNN算法是一种懒散的学习方法(lazylearning,基本不学习),⼀次主动学习算法速度要快得多。
(2)类评分未规格化。
不同之处在于通过概率评分进行分类。
(3)输出的可解释性较差。
比如,决策树的输出可以很好地解释。
(4)不善于处理不均衡的样品。
在样本不平衡时,例如⼀个类的样本容量很小,而其它类的样本容量很小,就有可能导致当一个新样本出现在同一K个邻域中时,在该类的K个邻域中占多数。这个算法只计算“最近的”邻域样本,其中一类样本的个数很小,那么这类样本可能与另一类样本的个数不近,或者这类样本与另一类样本的个数不近。然而,量的大小并不会影响到操作结果。对此,可采用一种改进的同位素同位素同位素同位素法(即同位素离位素同位素同位素同位素)。
以上就是pythonK-NN算法优缺点的介绍,希望能对大家有所帮助。更多Python学习教程请关注IT培训机构:千锋教育。
相关推荐HOT
更多>>如何使用Pandas处理Excel?
如何使用Pandas处理Excel?做过行政或者人事,或者对此有过了解的小伙伴,一定对下发各个部分的表有着非常深刻的印象,最常见的就是需要我们将一...详情>>
2023-11-14 07:43:15python中np.insert()函数的使用方法
python中np.insert()函数的使用方法在numpy数组操作中,np.append()方法可以在每行每列的最后添加数据,但其位置是规定的,那如果想要指定添加...详情>>
2023-11-14 05:06:13SVM在python中的原理如何理解?
SVM在python中的原理如何理解?在python中除了编程化的知识点外,对于数学方法的算法也有所涉及,SVM就是一种很好地体现。我们学习过数学中的坐...详情>>
2023-11-14 04:30:04python处理绝对路径和相对路径函数有哪些?
python处理绝对路径和相对路径函数有哪些?绝对路径和相对路径是什么?绝对路径:从根文件夹开始,Windows系统以盘符(C:)作为根文件夹,OSX或Lin...详情>>
2023-11-14 03:33:02热门推荐
如何使用python any()判断多元素?
沸如何使用Pandas处理Excel?
热python函数中的参数有哪些?
热python中pygal模块如何使用?
新Python的excel处理操作
python中doctest库是什么?
python中series是什么意思
python中np.insert()函数的使用方法
SVM在python中的原理如何理解?
Python描述符中有哪三种方法?
python处理绝对路径和相对路径函数有哪些?
python单继承和多继承如何定义?
python封装中的私有如何理解?
python模块引入的三种方式